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In this paper we consider use of some special log-linear models and

inimn estimation in the multivariate classification probleuposed by

Martin and Bradley (1972). We first define these models, called log-

difference models, and show that the minimum risk classification rule

depends only on a certain subset of the now parameters. We then review

mini, estimation, in particular the minium 8 estimator, the approxi-

mate minimum f6 estimator, and their existence properties. Two examples

are worked. The first involves detergent preference and illustrates how

extensions to the case in which not all variables are dichotomous

may be obtained through the use of orthogonal polynomials.

The second example involves infant hypoxic trauma, and many cells are

empty. The existence conditions are used to find a model for which esti-

mates of cell frequencies exist and are in good agreement with the ob-

served data.
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1. Introduction

This paper serves the dual purposes of extending the classification

problem considered by Martin and Bradley (1972), and of illustrating the

uses of minimum 6 estimation (Redman, 1981).

Martin and Bradley (hereafter denoted MB) consider the problem of

classifying individuals from L populations, 1(0) *.., (L) , into J cate-

gories, C1, ... , Cj, on the basis of a random vector Z which consists of

I dichotomous variates. They reparameterize the 21 possible state proba-

bilities as

nC (cV = wCz.)[I + h( € * V], (1)

where w( l ) () denotes the probability of state z for the Zth population,

w() denotes the probability of state E for a well-defined composite popu-

lation, and h( . is expressed in terms of 21 orthogonal polynomials,

the coefficients in AM being specific to the Ith population. Models
arise through the approximation of h( ( L), ) in (1) by a set of low-order

polynomial terms, h s(a(P), Thus, models for wCc) aret
( rof the form

,() - -CQ) [I * ] (2)

In this paper we generalize the problem. We assume that the various

levels or categories for the I variates define k states, which are labeled

consecutively. Thus, while MB define cells in their tables by an I-vector

Z, we simply take Z to be a variable which may take on values 1, ... , k.

In Section 2 we propose use of a model, called the log-difference

model, in the classification problem. As with the difference model of

1r
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MB, the log-difference model features some parameters that are general to

all L populations and some that are specific to individual populations.

In Section 3 we review the classification problem in detail. In

particular the miniimum risk classification rule is shown to depend on

those parameters specific to individual populations only.

In Section 4 the minimum 6 and approximate minitmum 8 estimation proce-

dures are introduced. These were developed due to the lack of convenient

conditions for the existence of maximum likelihood estimates in sparse data

situations. Convenient ccnditions for the minimum 6 estimator have been

developed and are stated here. The new estimators have been shown to be

asymptotically equivalent to the maximum likelihood estimator, so should

yield good results when sample sizes are large. Full details may be

found in Redman (1981).

Examples are given in Sections S and 6. The first is designed to

illustrate the use of the log-difference model when one of the variates

has ordered categories. The sample size is large, and the maximum likeli-

hood, minimum 8 and approximate minimum 6 estimates are nearly equal. In

the second example data are sparse, and the conditions stated in Section 4

are used to find an adequate model for which a minimum 6 estimate exists.

2. The Log-Difference Model

Before proceeding with the development of the log-difference model,

it is necessary to introduce some notation. The notation is similar to

that used in Redman (1981), but is somewhat simpler due to the structure

* necessary in the classification problem. Throughout, we consider two

sampling situations: the independent samples case, in which independent
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samples of size P ) are available from each population, and the single

sample case, in which the data arise fron a single sample of size TT from

all L populations. 'Je shall use an index s - L for tc independent samples

case and s = 1 for the single sample case.

Let U be the random (kL)-vector whose elements denote the number of

observations which fall in each of the k cells of the L populations.

Thus 1 {[i(l)] '  ..., {(L)]1 ,, where

InA ]  -n (n) 1, 1 I L,

and nc  denotes the number of observations for state i of the thpopu-

lation. In the independent samples case, we assume the multinomial

distribution,

nM '. M uhlt o' WM ; W!.,C') > 0, k. "n'! M t• L,

and define p' = UPI , [L],] through p u n')/N . In the

single sample case, we assume

' MultN. W, W [7r W(7l)], .; ) , , C

with pf n()/N. Note that, in the independent samples case,

s- •L, w!') is interpreted as the probability of state i for population Z,1

and, in the single sample case, s = 1, as the joint probability of state i

and population 1.

In an analogous fashion, we define X and X(), 1 1, ..., L, through

Y()0 = log w!'), i -1, ... , k. A log-linear model is specified by m

orthonormal constraints on x ly, aiQM , where 114(s) •mxs ,nd A(s) -tL

when s I and A(s) [ " when s * L.

kLxL ..
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We now describe a two-stage reparameterization of y which is useful

in the classification problem. In the first stage, (L 1 1) sets of k

parameters are defined; one set is general to all populations, and each

of the others is specific to a given population. The set specific to

population L is redundant in that it is a linear function of the other

sets and is not considered further. Each of the remaining L sets is

further reparameterized in the second stage. The motivation behind this

second reparameterization is in definition of the log-difference model

in which certain linear functions of this final set may be assumed to

be zero. This permits a reduction in the number of independent parameters

to be estimated and is of particular importance when data are sparse.

Define k-vectors yg, general parameters, and , parameters

specific to population it, through

(.) . ' +. , L a ,. L, (3)

and

* ~ j)}I~.(4)

Since (3) and (4) imply that

L m L ) L
a lI gan ~  * 1 .

g L-oV

and we need only consider y g and y(L) 1 1 , , L-1.
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The vectors and L1 , ... , L-, may be further decomposed

by means of

xa (6)

and

Am ) 1 €). A -1, ... , L-1, (7)

where 10' " L-1 are k x k orthonormal matrices and the k-vectors v

and ) 1, ... , L-1, are new general and specific parameters re-

spectively. In a log-difference model, m independent linear functions

of these parameters may be specified to be zero so long as they are con-

structed in conformity with the linear constraints of a log-linear model

as previously defined.

For a log-linear model with constraints All Qm' it is necessary

that 1A 0 2xs. Suppose we wish to specify

=0. •This is equivalent to

where

Q 2.. 2 (l/L)k ... (l/L), k  (1/L)k

A . . 2 (L-I)/L Ik ... (l/L)lk (-l/L)k (9)

2.. ... ... ... ... ...

_Q Q ... I . - l/-)j ... c-I)/,. t c-I/,.)l
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so that B! 9 is equivalent to B and it is necessary to choose such that

In practice one may often take

Use of orthogonal polynomials in the specification of the matrix X has

proven useful, although we leave the way open for other choices through

the use of arbitrary orthonormal matrices, 0 "'" L- If appropriate

orthogonal polynomials are used, elements of v and (, £ 1, ... , L-l,

may be given interpretations, for example, analogous to linear, quadratic,

and higher-order trend terms and their interactions in the analysis of

variance (Haberman, 1974), and selection of transformed parameters to

be taken to be zero for model simplification may proceed as in that

situation.

3. Classification Procedures

We formalize the classification problem of Section 1. Following

Martin and Bradley (1972), its essential features are:

(i) There are a finite number L of exclusive and exhaustive popu-

lations, R(l), ... H(L) from which the individual to be classified

may arise.

(ii) There are a finite number J of exclusive and exhaustive

categories C1, ... , Cj into which individuals are to be classified.

(iii) Samples from each population, or a single sample from all

populations, are available.
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(iv) An unknown individual U c JM with probability PC1
€(10

• 1, ..., L, is to be classified.

(v) The classification of U is to be made on the basis of its

belonging to cell i.

(vi) The loss entailed by classification of U c C., when U e AM 
)

is L(- ) , j a I, ... , J, Z a 1, ... , L. These losses are taken to be

finite, and may be taken to be nonnegative without loss of generality.

Conventionally, correct classification is indicated by zero loss.

The minimum risk classification rule is: Classify U e Cj, if

Rj,*(i*) is a minimum of {R.(i*), j = I, ... , J), where

R i L. P (n (j) P (il I 1) /P(i)

Ll

= 1 L )P(i, nfl))/P(i)

= L L ()P(H(#)li), j - 1, ... , J, i u 1, ... , k, (11)
',I i

P(i) denotes the probability of state i, P(i, 1(00) denotes the joint

probability of state i and population 1(i), and P(i1nH(') and P(n(TI)i)

denote conditional probabilities. If the minimum is not unique, one may

choose any C3, such that j' corresponds with any one of the minimizing

values of R (i') and the risk is not affected. The minimum risk is

k
rmin I P(i) min(R (i)). (12)

il J



The classification rule above may be simplified somewhat through the

use of (3). In the single sample case, R (i) in (11) may be expressed as

R.(i) . I L exp Y L)/pMj)
3 iLi i

a LCL)expY exp AM)/PM

= 3 gi i

f Lt) eC4)}

a exp Yg{ 1 L L )exp A i) . (13)

Clearly the minimum risk classification rule depends solely on the tt

in brackets in (13), an expression involving log-difference paramete

specific to each population only.

Similarly, when independent samples from each population are available,

R (i) may be expressed as

R (i) -L Lcexp .4L)P(njm)/P(i)

"= Lt)exp y exp At)pcnC())/pi)
=1 e i xp 1

a exp y giJ 3(~x 1 1PH")/~) (14)

This time the minimum risk classification rule depends on the term in

brackets in (14), a slightly more complicated expression than (13), in

that the probabilities p(f()) are involved. Again the log-difference

parameters general to all populations are not involved.
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In practice, estimated classification rules are needed. Log-difference

modelling will be used and estimators of A!') used in place of A!') in (13)1 1

and (14).

4. Minimum 6 and Approximate Minimum 6 Estimators

In this section, we find minimum 6 and approximate minimum 6 estimators

following the general procedures of Redman (1981). We also state conditions

which are of use for determination of the existence of a minimum 8 estimator

in sparse data situations. These conditions will be used in the second

example of Section 6.

The minimum 6 estimator of , is that point in

f k
r(: 1 = 0m' 1 = , = , L, s f L, or

L k (2)
exp- (0 , s = 1 which minimizes£=I i=l '

( k C£)Clog _(! 1 )2. The function 6 is a transformed
9£=1 i=l1

X2-like function, whose use is motivated by the linear n'ture of some of the

constraints on y expressed in the parameter space r(O1). The minimum 6

estimate may be found through solution of the following system of equations:

2[N(log p - ) - Y(e)] =kL-m' BIl =O,

and (15)

k M
exp yi = 1, £ = 1, ... , L, f L

or

L k (.
exp y = 1, s = I.

H=1 i=l

Here, 82is an orthocomplement of B1 , that is,
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[hll~iil kL'
L2J L 2J "

Sis the diagonal matrix with entries (1 (1 (L) n(L

and [Xy [y() y,...(l) (y) ~ (), (L) S
yCL)) ex L() C L) _ CL) (A

y! (y) *exp L kJO (0log P!' - ), s L,

and kil

y!L(y)iexp JO(log PM - ( )£3 l Yj1 P

i • 1, ... , k, 1 1, ..., L.

The approximate minimum 8 method is an ad hoc variant of the minimum

6 method. The approximate minimum 6 estimator is denoted by ia, is easy

to compute, and may serve as an initial value for iterative solution of

equations (15).

Two steps are required for the calculation of " The first involves

minimization of 6 (X;n) over {y: Ily - 0 ). This is the classic minimi-
'-I

zation of a weighted sum of squares function over an affine space and the

set of vectors which yield the desired minimum is given by

=~ ~ B [Q: M 2( ~)B 2N log p

- (B2 .P ) ) E Ekmn}.

Note that ( 2 )" is a generalized inverse of A2N . When B2NB' is non-
2 2-22

singular,

" 1 CN log p. (16)

The second step in calculation of a adjusts j so the resultant esti-

mated probabilities sum to one. Thus
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: y -a c,(), i "* 1, ... k, 1. 1, ... , L, (17)

where
k

cz~y) I exp _.C) Y- L, -L,

or
L k

c(i) - cc) I I exp j"), s .
Ll Mul

Due to the nature of the set F, an approximate minimm 6 estimator always

exists, and the estimator is unique if and only if 12P is nonsingular.

The set r is also intimately related to the existence of the minimum

6 estimator. Let

:jet, expi = C L, L, exp c),

where

iz nf(c,(y)) = inf k expCY('))~ 1,... L, s *L,

or

cinf{c(j-)} i I I (AJ))
yet - f 1l i-l 1 1 .

The set F* is either empty or a sin!,leton. The following conjitions have

been obtained by Redman (1981):

Condition 1: A minimum 6 estimator exists if and only if f* is a singleton.

Condition 2: If (B2NB) is nonsingular, then a minimum 6 estimator

exists.

Condition 3: If all cells contain at least one observation, then a

minimum 6 estimator exists.

We conclude this section with the remark that, whenever a minimum 6 estimator

exists, it is unique.
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S. Detergent Preference

Our first example involves detergent preference. The data are in

Table 1, were collected in a single sample, s a 1, by Ries and Smith (1963),

and have been previously analyzed by Goodman (1971), Bishop, Feinberg,

and Holland (1975), and others.

The data result from an experiment in which 1008 people expressed

their preferences for two brands of detergent, X and M. They responded

also to three questions corresponding to three variables:

1. Previous experience with brand M: yes or no,

2. Water hardness: soft, medium, or hard,

ad3. Water temperature: high or low.

Respondents were taken to represent two populations, 11 consumers who

prefer X, and 11(2) : consumers who prefer M. We assume that the levels

of variable 2 are ordered and equally spaced, and we take X with

orthonormal columns proportional to the columns of the following matrix:

1 1 10 - 1 1 -2 1 -0 -1 -1
1 1 0 -2 -1 0 -2 -1 0-2 0-2

1 -1 0 -2 -1 0 -2 -1 0 -2 0 2
11 - 1 12 -1 01 1 -0 1 -2

L 1 -1 1 -1 -1 -1 1l 1 -1 -1 -l

This matrix has been constructed with the aid of the orthogonal poly-

nomials of Fisher and Yates (19S3). Interpretations which may be given

to the elements of v and PMare given in Table 2.
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Table 2.-- Interpretations Which May Be Given to
Parameters in Detergent Example

General Specific Interpretation

Vl ) overall mn

V2 (1) main effect, var. 1

V 1) linear term, main effect, var. 2

V4  U( 1)  quadratic term, main effect, var. 2

UM (main effect, var. 3

6 var. 1 by linear term var. 2 interaction

V 1) var. 1 by quadratic term var. 2 interaction
7 7

v8 var. I by var. 3 interaction
9linear term var. 2 by var. 3 interaction

" 10quadratic term var. 2 by var. 3 interaction

10 "10

V (1) var. 1 by linear term var. 2 by var. 3 interaction

v 12  var. 1 by quadratic term var. 2 by var. 3 interaction

11
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The authors cited have fitted a variety of models to these data. We

use the model in which

(V ( i  , V , 0 , 0, 0, V98 v1O, 0, 0) u

[.(1)(, ) (1 ] (8[U [P(I p~l, (18)

because the previous work suggests that this model should fit the data

reasonably well and because it involves few parameters, particularly those

specific to population (l).

The estimated frequencies derived from , a' and j are reported in

Table 1. Computation of j was effected through use of CONTAB (Zahn, 1974),

and computation of ia through use of (16) and (17). Computation of j was

effected through solution of equations (15) by means of Newton's Method,

(Acton, 1970), with Yia, the initial value. The left-hand side of each of

equations (15), evaluated at the first iterate, was less than 10"7, so the

first iterate was taken to be the minimum 6 estimator.

The goodness-of-fit statistics are X2 (; n) a 16.7265, where X2 Q; n

is the usual Pearson statistic, and 6(ja; S) 6(j; n) 16.5904. Under

the model, all three statistics are approximately distributed as X1S

(Redman, 1981). The values of these statistics are only slightly above

expectation, indicating good fits of the model by all three methods.

For classification purposes we take populations n(l) and It(2) to

coincide with categories C and 2 and L(l) L(2)*o,. (2) . 2(I .1.

For these losses, the classification rule is simplified. Now, we have,

from (13),

--- ------------- t ~
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S (A) * * (2) l,.x1 (M
R1I) a* ex Lf')e P£=1

and

2
R2 (i*)a I L~t)exp A* ) mexp

2 al 2*

the constants of proportionality being the same. The classification rule

reduces to: Classify U e C if A! k 0, and U e C otherwise. For the

model used here, we have assumed

(1() UM

and the minimum 6 estimates of u~(l) and u () are 0043, ;(l) =-0.7062.
1 2  re 1  =* 2

Thus, the estimated classification rule is: Classify U e C1 if

i (1) * (0.0043 X iI - 0.7062 X1iJ2) 2 0, where X li denotes the (i, j)-

element of I I' and classify U e C2 otherwise.

Similarly, the minimum risk in (12) reduces to the minimum probability

of misclassification,

rmin = k P(i)minP(H(1)Ii), P( 2)Ii)}.

ia1

To estimate this probability, we simplify

....... - --- - - -
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kPi)min{Pi, R(1))/Pi), M.L HC2) )/Pi))

min{P(i, j~l)) Pi, 1(2))), (19)
jul

and make use of Table 1, from which estimates of P(i, iCi)) may be obtained.

For instance, for state I the minimum 6 estimators are

$1) - a PCI, (1) = 21.35/1008 a 0.021,

and

-(2) -(2)

1r2 l!12 - PCi, UC ) n 28.43/1008 = 0.028.1 12

The estimated contribution to (19) for i a 1 is 0.021. The estimate of

is -. 425 for j and j,, it is 0.429 for j, and, for all three estimators,

the proportion of individuals in the study that would be misclassified is

J.429. These figures compare favorably with the estimate of the probability

of misclassification 9.421 based on the full model but are by no means

impressive.
(1C1) i h oe isi

One may even wonder if inclusion of p 1) and in the model aids in

the fit of the data. To examine this, we assume y and test

HO: 2p(1) = 212'

against

(1) 1 01. V

Under Ho.'-c 1 ,; 0 - 6(j; n-) is adroximately distributed as x 2 where

is the minim 6 estimate of i under Ho . We obtain 20.6404 for this statistic,
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a value which indicates rejection of the null hypothesis and suggests that

inclusion of nand siificantly improves the fit of the model to

the data. This test demonstrates that the two populations are indeed dif-

ferent under the restricted model defined in (18). Classification should

be possible.

6. Hypoxic Trauma

The second example involves data used by MB1 and are concerned

with history and behavior of infants following hypoxic trauma 2 . For these

data s a 1, I = 4; all variables are dichotomous:

1. race, white or nonwhite,

2. suggestive or nonsuggestive medical history of mother,

3. infant first breath before or after five seconds,

4. infant first cry before or after 30 seconds.

The populations are H(1): Infants with Apgar scores 3 of seven or below and

H(2) : Infants with normal Apgar scores. The data are in Table 3.

We take t - A with orthonormal columns proportional to the colums

of the following matrix:

1 1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1l

1 1 1 -1 1 1 -1 1 -1 - - 1 -1 -1 11 1 1 -l -l1 I-l -l -1 1 1 -l -l 1 1 1
1 1 -l 1 1 -l 1 1 -1 1 1 -l -l 1 -1 -1l
1 1 -1 1 -1 -1 1 -l -1 -1 -1 -l 1 -1 1 1
1 1 -l -l 1 -1 -1 1 1 -l -l 1 -l -l 1 1
1 1 -l -l -l -1 -1 -l 1 1 1 1 1 1 -1 -l
1 -1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -l 1 -1
1 -l 1 1 -l -1 -l1 1 -1 -1 -l 1 1 -1 1
1 -1 1 -1 1 -l 1 -l -l - 1 -1 I-l 1 -l 1
1 -l 1 -1 -l -l 1 1 -l 1 1 1 1 -l 1 -1
1 -l -l 1 1 1 -l -l -1 1 1 1 1 -l -l 1
1 -1 -1 1 -1 1 -1 1 -1 -1 -l1 I-1 1 1 -1
1 -l -l -l 1 1 1 -l 1 -1 -1 -l 1 1 1 -l
_1-1 -1 -1-1 1 1 1 1 1 1 -1-1 -1-1 1

1M reference unpublished data of Joan C. Martin and Celia Lamper,

Duke University.
2 lypoxic trauma: Damage to an infant during or shortly after birth

caused by oxygen deficiency.
3Apgar score: An index of the level of physiological functioning based

on symptoms of the infant observed shortly after birth. See Apgar (1953).
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This matrix has been derived from MB (Equation 2.1). The parameter

associated with the first column of this matrix may be interpreted as an

overall mean, those associated with columns 2-5 may be interpreted as

main effects of variables 1-4 respectively, and parameters associated

with succeeding columns as interactions.

Due to the many empty cells in this data set, the possibility that

minimum 8 estimators do not exist for many models is of concern. Therefore,

a preliminary study to identify a reasonable model for which a minimum 6

estimator exists had to be undertaken. The results of this preliminary

examination of the data are contained in Table 4. In step 1, it was

determined that a minimum 6 estimator does not exist for the model in

which elements of v and UM~l corresponding to main effects were included

(Mo(12 1). If UOl) is deleted from Model 1, a minimum 8 estimator does

exist (Model 2). Elements pu1  U (1. 11 (1, and u()and no other specific

terms are included in succeeding models. The existence of a minimum 6

estimator for Model 3, which involves elements of y corresponding to main

effects and first-order interactions, was checked next. No minimum 6

estimator exists for this model, and so, in the final step, the existences

of minimum 6 estimators for models in which general main effects and

three first-order interaction terms involving one of the variables were

checked (Models 4-7, variables 1-4).

Minimum 6 estimators exist for Models 2, 4, and 7. Approximate minimum

6 estimators were calculated for these models and the values of the cor-

responding 6(ia; W) are given in Table 4. The value of 6(j~;~ o oe

appears to be substantially lower than for the other models and so Model 7

was selected as our model.
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Computation of j was again effected iteratively by means of Newton's

Method with use of :Y4 as an initial estimate. After four iterations,

8( ; j) u 3.2967 was obtained. Estimated frequencies based on j and :-a

are given in Table 3. With the exception of a few zero cells, the observed

and expected frequencies appear to agree rather well. Observed and expected

frequencies agree in the zero cells more closely for the MB model, but it

should be noted that the MB model uses nine more parameters than the present

model.

Aga 2i w 0, ,() = L ) - 1. As in the previous
( 1)

example, the classification rule depends only on Ai* and the probability

of misclassification is given by (19). For Model 7,

.(1)
12

(l) = xl

0
(1)

°11

Thus, the estimated classification rule is: Classify U e C if

(1) -(1.0508 x 0.7479 x 0.8926 x 2.3272 x 0,i" • 100 li,1 Xli,2 Xli3 XliS

and classify U e C2 otherwise. The estimates of the probability of mis-

classification are 0.37S for :ja' and 0.377 for j, and, for both estimators,

the proportion of individuals that would be misclassified is 0.379. This

proportion matches the proportion misclassified for the KB model.
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